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MEMORANDUM 4-14-59A

SAMPLED-DATA TECHNIQUES APPLIED TO A DIGITAL
CONTROLLER FOR AN ALTITUDE AUTOPILOT

By Stanley F. Schmidt and Eleanor V. Harper

SUMMARY

Sampled-data theory, using the 7 transformation, is applied to the
design of a digital controller for an aircraft-altitude autopilot. Par-
ticular attention is focused on the sensitivity of the design to parameter
variations and the abruptness of the response, that is, the normal accel-
eration required to carry out a transient maneuver. Consideration of
these two characteristics of the system has shown that the finite settling
time design method produces an unacceptable system, primarily because of
the high sensitivity of the response to parameter variations, although
abruptness can be controlled by increasing the sampling period. Also
demonstrated is the importance of having well-damped poles or zeros if
cancellation is attempted in the design methods.

A different method of smoothing the response and obtaining a design
which is not excessively sensitive is proposed, and examples are carried
through to demonstrate the validity of the procedure. This method 1is
based on design concepts of continuous systems, and it is shown that if
no pole-zero cancellations are allowed in the design, one can obtain a
response which is not too abrupt, is relatively insensitive to parameter
variations, and is not sensitive to practical limits on control-surface
rate. This particular design alsoc has the simplest possible pulse
transfer function for the digital controller.

Simulation techniques and root loci are used for the verification of
the design philosophy.

INTRODUCTION

The design of sampled-data systems, the theory of which is applicable
to feedback control systems utilizing a digital computer, is a relatively
new field but is receiving considerable attention in those applications
in which the basic information is received as pulses or in the form of
numbers. This may be due to greater accuracy requirements, since digital
transducers can be made more accurate than analog transducers, or to the
fact that the actual measurement device, for example a radar, yields a
sampled signal. Another application in which digital computers in real



time control systems are receiving attention is where a large amount of
flexibility of changing computation procedures is required (e.g., an
interceptor aircraft having a fire control system, an automatic landing
system, altitude and direction hold systems, etc.). In these applica-
tions the digital computer offers a possibility of weight reduction and
improved reliability, both highly desirable features.

The sampled-data theoryl has progressel to the point where it is
possible to design a digital-controller pulse transfer function so as to
obtain an over-all system pulse transfer function which will meet certain
specifications, such as being stable and physically realizable, having a
minimum settling time in response to a givea input, having a ripple-free
response after a short transient, etc. A sirvey of the literature, how-
ever, has indicated a scarcity of information on the sensitivity of a
system to parameter variations or how to coatrol, in the design process,
the abruptness of the response. References 2 and 3 touch upon the sub-
Ject of abruptness and show one method of sinoothing the response by
proper design of the characteristic equatioa. Another shortcoming in the
literature has been that the examples are restricted to plants of third
order or less.

It is the purpose of this paper toc show, first, that considerations
of the sensitivity of the response to param:ter variations and abruptness
of the response to transient inputs preclud: the use of finite settling
time design (i.e., one in which the error is reduced to zero in a speci-
fied number of sampling instants); second, 0 show that continuous system
design concepts can be used to select the dominant poles of the closed-
loop pulse transfer function so as to achieve a desired transient
response; and third, to present results of a study of the design for a
fourth-order plant.

In order to obtain some indication of he practical limitations
imposed on the response of the system, the 'plant" is taken to be an
aircraft and the system to be one that cont-ols the aircraft's altitude.
The abruptness and sensitivity of the respoise to a transient maneuver
will be judged in this application by the mignitude of the maximum load
factor and the change in the stability of thie system with parameter
variations.

In order to obtain a system response that will be acceptable to a
variety of inputs and flight conditions the theory of design used here
is different from that normally employed to "soften" the response.

1The theory and design methods contained in this report were derived
to a large extent from a course taught at S-anford University by G. TF.
Franklin. Reference 1 by J. R. Ragazzini and G. F. Franklin contains an
extensive bibliography of the available literature on sampled-data theory.
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NOTATION

normal acceleration, ft/sec®

mean aerodynamic chord, ft

pitching moment
(1/2)pv3sc

pitching-moment coefficient,

vertical force
(1/2)pv3sc

vertical-force coefficient,

2.7183

altitude, ft

change in altitude, ft
moment of inertia, lb—ft/secz
-1

mass, 1b sec®/ft

1 pV3sc (écm Cm T
2 Iy da ’ dqc/ev 2V,
1 pV3Sc dCy

T BCm>
2 Iy \odg/ev 2v ' 9%

pitching velocity, radians/sec
Laplace operator

wing area, ft2

sampling period, sec

velocity, ft/sec

eST = 7 transform operator

2 m do ’ O3B

7 transform of f(t)

angle of attack, radians



7 flight path angle, radians
& control-surface deflection, radians
£ damping ratio
e pitch angle, radians
1 3.14159
o density, 1b sec®/ft*
Wy natural frequency, radians/sec
n
-1 . . . -1 -1
F(z ) finite polynomial in =z of forn a4z
i=o
Superscript
* sampled version of a function of time

FUNDAMENTAL CONCE >TS

The theory of sampled-data systems is :overed in considerable detail
in references 1 and 4. However, it is desirable to include herein certain
of the fundamental concepts of sampled-data systems so that the applica-
tion of the theory to the example chosen wi.l be understandable by those
familiar with the design and analysis of liniear feedback systems.

Elements of a Sampled-Da.a System

The basic elements of a simple sampled-data system are shown in
sketch (a). Here the continuous error signal e(t) is measured at
regular intervals, T seconds apart, by the sampler. The output of the

rit eft) *(t c(t)
" O/O-—e-(—)— Controll Z’— C‘;‘;g&'rl:d
- Sampler .

T

Sketch (a)



sampler consists of a train of pulses whose amplitude (or area) represents
the value of the input at each sampling instant. This pulse train e*(t)
is modified by the controller to provide stability and other characteris-
tics to the complete system as well as smoothing of the sampled data.

The controlled-system characteristics are presumed known and in this
report will be represented by a transfer function relating altitude to
controller output.

Analytical Descripticn of the Sampler

The output of the sampler shown in sketch (a) can be written as
e(t)i(t) = e*(t) (1)

where 1(t) is a train of unit impulses occurring every T seconds.
This operation is illustrated in sketch (b)

elt) it eX(1)

“ L

7 * -

Sketch (b)

Now using an infinite series expression for i(t) the sampler output
becomes

e*(t) = e(t) }:uo(t - nT) (2)

where ugy 1s the unit impulse function. 8Since the unit impulse function
is zero except at time nT, this equation can be rewritten as

o]

e*(t) = }je(nT)uo(t - nT) (3)

n=o

where e(nT) is the value of the input when +t = nT. The Laplace trans-
form of this equation is



o0
E*(s) = Ze(nT)e_nTs ()
n=o
A second method of specifying E*(s) is by expanding
+o0
Zuo(t - nT) = i(t)
- 00
in a Fourier series which gives
+co /
. 1 Jermt /T
TORE I (5)
—00

since the Fourier series coefficients are corstant and all equal to 1/T;
therefore,

400

e*(t) = e(t) %Zejm”/T (6)

- o0

By theorem (see ref. 5)

L[f(t)ejm] = F(s - Jw) (7)

o) - 1) 3 - 239) ®

This formula shows that E*(s) is a periodic function repeating itself
every 2n/T radians per second as illustrated in sketch (c).

then,

[ECiw) |
[ )
|[E*(jw)
. AN
-2 27 N
T T

Sketch (c)



The 7 Transform

The 7 transform of a function of time (defined only at sampling
instants) can be found by substituting z = 5T in equation (4). Thus

(22

Z[e*(t)] = E(z) = EZe(nT)z_n (9)

n=0

The infinite summation can be found in closed form for all applica-
tions considered here. To find the closed form one can either sum the
series (9) or use the complex convolution integral

~C+ Joo
E(z) = E*(s) = 5%3 E(A) dA

. -T(s - )
z = e5T cT 1-e z=e

(10)
sT

Tables have been prepared for a large number of the useful % transforms
(refs. 1 and 4); thus, in general it is not necessary to use complex
integration. The 2 transform can relate the sampled input of a system
to the sampled output. When it is used in this manner it is commonly
referred to as a "pulse" transfer function.

To obtain e(nT) from a closed 7 transform there are three courses
that can be taken

1. Refer to tables (refs. 1 and 4).
2. Expand E(z) in powers of z ! by long division.

3. Use the formula e(nT) = L E(z)z" " 'dz where T is
the unit circle. T

The initial and final value of a pulse sequence which results from
inversion of a pulse transfer function can be determined readily from
the following theorems:

Initial value theorem £(0) = 1lim F(z) (11)
Z—> o0

Final value theorem o) = lim (1-2z"1)F(z) (12)
21

A further important point about the 2 transform is the stability of a
given pulse transfer function. Since z = e5T it can be seen that the
left half of the s plane maps into a unit circle in the 2z plane.
Thus, if all poles of a pulse transfer function are located inside this
unit circle the pulse transfer function is stable.



In general, for a sampled-data system of the type illustrated in
sketch (a), that is a sampling of the error signal, the ¥ transform can
be used similarly to the Laplace transform for a continuous system.
Root-locus methods of analysis can be used in the =z plane; however,
they are difficult to apply since the region of interest is that inside
the unit circle. The drawing of the root locus becomes relatively tedious
since asymptotic behavior provides no help in giving a rough idea of the
position of the loci as is the case in the s plane. It should also be
recognized that the 7 transform design specifies only what happens at
sampling instants. This is not a serious drawback, however, for in order
to determine system behavior it is always possible to test the designed
system by simulation techniques. Also, from the transfer function of the
continuous elements of the system, a relatively accurate idea of the
system behavior between sampling instants can be determined.

Because of the drawbacks of root-locus techniques in the =2z plane
and for other reasons, the design of sampled-data systems is probably
best carried out by a different method. This method, which is explained
in the next section, could be applied to continuous system design as well;
however, to the authors' knowledge, it is not in widespread use.

Design Criteria For Digital-Cortroller Pulse
Transfer Function

The procedures for the design of the digital controller D(z) are
outlined with reference to the simplified blcck diagram shown in sketch (d).
In this sketeh D(z) represents the pulse trensfer function of the digital
controller. The zero-order hold circuit constructs a continuous signal

¢ K(z) -

=y oe -
| »{ [I-k(2)] }4 l* Glz) 1 »|
! ‘4 Gls) —pl

|
Zero-
r(t)l X / <=E(z) Bz) E @) 7 rder Plant | clt)
T T hold

Circui®

Sketch (d)



from a sampled signal as shown in sketch (e). The transfer function for

this operation is (l-—e'ST)/s. The block labeled "plant'" represents the
fixed elements of the system.

Hold circuit

input | I

Time,t

Hold circuit
output

Time,t

Sketch (e)

The following equations are developed from sketch (d):

K(e) = 2] (13)
1 -K(z) =§é§ (14)
K(z) _¢(z) _ 5euvals
therefore
K(z) 1
2(2) = TT%T a(a) (16)

Equation (16) is the fundamental design equation. Certain mathemetical
constraints must be put on this equation in order to arrive at a stable
system which has the desired characteristics., These constraints and the
reasons for them are as follows:

I. Stability

A. K(z) must be of the form
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IT.

IIT.

[(1-a327Y)(1-a5272). « 1B +Byz " +. . ) (a7)

where the B's are undetermined coefficients and 2z = a,,

Z = 4as, . . . are the zeros of G(z) on or outside the unit
circle (on or outside the stable region in the =z plane).
The reason for this constraint is obvious from equation (16).
If it is not satisfied D(z) will have a pole where G{z)
has a zero, and consequently come of the poles of D(z) will
be outside the stable region causing the over-all system to
be unstable since perfect cancellation can never be expected.

B. 1-K(z) must be of the form
[(1 -blz-l)(l -boz ). . .](7(f+7lz_l-+. L) (18)

where the 7's are undetermined coefficients and 2z = b,,

z = by, . . . are the poles of G(z) on or outside the unit
circle in the =z plane. The reason for this constraint is
also obvious from equation (1¢), for if it were not met,
zeros of D(z) would be imperiectly canceling poles of G(z)
outside the stable region, a fact which would cause insta-
bility in the over-all system.

Zero Steady-State Error to an Input of the Form r(t) = t°

The 7 transform of t" is of the form [F(z 1)]/[(1-z"1)Pt1].
If zero error to such an input is desired (at sampling instants)
then 1 - K(z) must be of the form

(1 -2 Y Fy(z"1)] (19)

where F,(z™1) is a polynomial in z~% satisfying other

constraints. This can be seen by applying the final value
theorem (12) to equation (14).

Transient Performance
A. Finite settling time

(1) Minimum
If only T and II are satisfied then K(z) will be the
lowest order polynomial in z~!., This results in a
minimum finite settling t:me since reference to equa-
tion (9) shows that e(nT) will be zero (to a unit
pulse input r(t)) after T +times the order of K(z)
seconds.

(2) Zero ripple
Zerc ripple by definition means that for an input of
form r(t) = t? the output must be of the form to.
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In other words, the output must follow the input between
sampling instants. With reference to sketch (d) this

can only be accomplished if e,(nT) is zero or a constant
in the steady state, for otherwise the output of the
zero-order hold circuit would be stepping from one value
to another, which would cause ripple.

By (z) - gg—; - R(z)

K(z)
a(z)

(20)

For e;(nT) equal to a constant in the steady state,
equation (20) must be of the form

F(z™h)

1-z"1

as can be seen from equation (12). Thus, for zero
ripple all the zeros of G(z) must be contained in K(z).
This is not the only requirement. In addition if

R(z) = —F=)
(1-z-1)2%1
then G(z) must have an nth-order pole at z = 1 to
cancel all but one of the poles of R(z). An even
simpler way of assuring that zero ripple is possible is
to count the number of poles of G(s) at s = 0. If
r(t) = t® then the number of poles of G(s) at s = 0
mist be greater than or equal to n+1.

B. Smoothing

As is described in reference 1 it is possible to add a
denominator® to K(z) which has been determined by the pre-
ceding results so that K(z) is of the form

~ F(z™1)
K(z) - (L+ciz™ +coz@4+. . ) (21)

The addition of this denominator changes the system such
that finite settling time is no longer obtained. It is
mentioned in reference 1 that the choices of c's can be
made for

2Note that in reality we are not necessarily increasing the order of
the characteristic equation. What is really done is to change the charac-
teristic equation from one with all roots at =z = O to one which allows
some of the roots to be at other positions inside the unit circle in the
z Dplane.
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(l) Smoothing the transient response so that it is not
as abrupt.

(2) Optimizing the responsz in the presence of noise.
This report illustrates that if considerations of sensitivity
and abruptness of response are important, then one should
always design the system so that K(z) has a denominator.
It is shown in a later section of this report that a choice
of c¢'s in equation (21) which will satisfy abruptness of

response requirements can be dstermined from continuous
system design theorems.

DESCRIPTION OF PROBLEM

The problem chosen as an illustrative example is an altitude command-
type autopilot. In order to reduce the prcblem to block diagram form it
is necessary to derive the aerodynamic equations and put them into trans-
fer function form. In order to do this certain assumptions must be made
as follows:

(a) The aircraft does not roll.

(b) The velocity is a constant.

(c) The altitude is approximately constant.

(d) Small angle approximations are valid for 6 and 7.

(e) The aircraft is initially in trim flight.

(f) The aercdynamic coefficients are constant.

With these assumptions the following equations are valid

-g+& = -7 = Zo0+7Zgd (22)
q = My@ +Mgq +Mpd -+ Mga (23)
q =0 pitching velocity
Vy = a4 normal acceleration
Vy = h rate of change of altitude

from which the transfer functions given below can be derived:
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q (Mg + MgZs)s + (M Zs - MsZy,)
= = (24)
5 g2 = (2o +Mg + Mg )s + (MgZg, - M)
y a - s2 : 5 - a "
%; i §§ y (-2g) -+(Mq-+Md)ZB (MgZq, =~ Mo Z5) (25)

§2 = (Zg + Mg +Mg)s + (MgZg, - Mg,)

As a representative aircraft an interceptor at a cruising velocity of
695 feet per second, 30,000 feet altitude was chosen. The aerodynamic
constants are tabulated below

My = -16.0k4 My = -0.489
Mg = -0.1630 My, = -6.737
Zg = -0.6716 Zg = -0.1205

V = +695 ft/sec

With these values the transfer functions (24) and (25) become

g  -16.02s - 9.961
5 = 52 +1.32hs + 7.065 (26)
Vy ap  83.7552+54.61s - 6923
3] & s24+1.32h4s+ 7.065

(27)
The block diagram of the system is as shown in figure 1. Two cases
designed for comparative purposes are as follows:

Case T Kq =0

Case II Kqg = -0.18

These values of result in the transfer functions between M, the
cutput of the hold circuit, and a, of

. 8z &g
1.0 .7, M-

o

Case I

(28)

% ~ 83,7552+54.6ls ‘6923
Case II M~ s24L4.206s+8.858




14
APPLICATION OF DESIGN CRITERIA TO ALTITUDE AUTOPILOT

Theoretically, the only constraint which must be imposed upon the
design of a digital controller is that the system be stable. As shown
in the previous section a minimum finite settling time system would
result from this constraint alone. Since it is desirable to have zero
error continuously one must also impose the zero ripple constraint.
Practical considerations, however, such as abruptness of the response to
step inputs, smoothing of noisy inputs, and sensitivity to parameter
changes may require that additional constraints on the design be imposed.
It is desirable, therefore, to investigate the different designs which
can be made and study their characteristics by means of simulation.

Choice of Sampling Period

There seems to be no theoretical method of choosing the optimum
sampling period for a closed-loop system. If the input command were
band limited to a frequency w, then the sampling theorem states that if
1/2w = T, all information can be reconstructed from the samples. This
theorem does not apply here since the system is completely satisfactory
only if zero error to all possible inputs is maintained. This dilemma
is not studied here. The choice of sampling period is based on knowledge
of the control of an aircraft by a human pilct. Previous studies indi-
cated that a period of 0.25 second is about the longest that should be
chosen. For exemplary purposes a period of 1 second is also chosen in
order that effects of sampling period in the design can be demonstrated.
Practical considerations probably would force the choice of period to be
the shorter of the two, principally because & 1 second sampling period
would cause a rough flight for the pilot. Tte 0.25 period or 4 cps
sampling rate appears to be high enough that the jerkiness of the hold
circuit output during transient inputs would be quite well filtered by
the control-surface servo and aerodynamic lags.

Finite Settling Time Design Wiih Zero Ripple

Finite settling time design, Case I, Kq = O, T = 0.25 second.- The

steps involved in the design are shown for this example for the benefit
of those unfamiliar with digital-controller cesign methods. The first
step is the determination of G(z)

_(1-e8 83.75s2 + 54 .6..s - 6923 _1_>
G(S)_< ST) 52 + 1.324s + 7.065 (sZ (29)

Transfer function (29) is expanded in partial. fractions
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- 979.8 191.3 11k.7 11k.7s + 343.1
G(S) - (l e ST)<_ sa T s2 T s - s2 +1.32hs + 7.065 (30)

The individual terms are converted to Z transforms, using the tables
of reference 1 or 4, and then recombined to give

) 1.360z° - 12.67z% - 11.96z + 1.0k
~ (2-1)2(22- 1.3562 +0.7182)

G(z) (31)

1.360z 1 -12.6727° -11.962"3+ 1.0z "% (32)
(1-2"%)%(1-1.3562"1 +0.71822"2)

The next steps are to determine K(z) and 1-K(z) such that stability
and zero ripple constraints are satisfied.

K(z) = (Numerator of G(z) in powers of z'l)(Bo-+Blz'l)

il

1l

(1.36027% - 12.6727% - 11.9627° + 1.0742"*) (B, + B,z %) (33)

_ _ |Poles of G(z) on or outside unit -1 -2 -3
1-K(z) = [ circle in powers of z~1 ](7°'+71Z *7227 4752 7)

= (L-22"Y4272) (7, +7,27 P+ 70278 4y 270) (34)
The coefficients of equal powers of z ' in the expression 1 -K(z) as

obtained from equations (33) and (34) are equated. Enough undetermined
coefficients must be provided to give a sufficient number of simultaneous
equations in y's and B's to allow their solution. For this example, the
solution of the simultaneous equations gives

Yo = 1.000 Bo = -0.1579
7, = 2.215 B, = 0.1128
7, = 1.276

74 = -0.1211

Then
K(z) = (1.360z7% -12.6727% - 11.962 2 +1.074z"%4)(-0.1579 + 0.1128z 1)
(35)
1-K(z) = (1-2"%)%(@+2.21527 2+ 1.276272 - 0.12112"2) (36)

The last step is the substitution of equatiomns (35), (36), and (32) into
equation (16) to give
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-0.1579(1 - 0. 714627 1) (1 - 1.356z"* + 0.7182z2 %)
1+2.215271+ 1.276z2"2 - 0.1211z"2

D(z) = (37)

The design at this stage is complete. This system as designed,
however, may be unsatisfactory because of sensitivity to parameter
changes and abruptness of the response. Ar analog computer simulation
is one of the best ways of analyzing such & system. This method is used
here. Appendix A shows one procedure by wkich a digital computer can be
similated on an analog computer. This method is derived in reference 6.
Derived, also in appendix A, is the detailed computer diagram for this
example. Appendix B contains a descriptior of the electronic sample-
hold circuit used for simulation purposes in this investigation.

The results of the simulation studies are summarized in figure 2.
There are two important things to note in figure 2. The first is that
the system does not have a finite settling time. This is obvious from
figures 2(a) and (b) in which it can be seen that both the step response
and the ramp response contain an oscillatory mode which damps exponen-
tially. This appears to be due to the extreme sensitivity of the system
which makes 1t impossible to simulate the system even with highly accu-
rate analog computing equipment. The secord item of importance to note
is that for a step input of 10 feet, figure 2(a), a peak acceleration of
approximately 31 g's is required during the transient maneuver. This
large peak in acceleration is a result of the linear analysis. In an
actual aircraft, control-surface position znd rate limits as well as
aerodynamic nonlinearities would prevent such an excessive peak. One
cannot state what the exact performance of the finite settling time
design would be with the actual nonlinearities; however, the introduction
of a high-performance servo in the simulation resulted in an instability
of the system which indicates that in all rrobability nonlinearities
would also cause system instability.

Figure 2(c) illustrates the effects of a 1lO-percent increase and
decrease in system gain. These results plvs the fact that the similated
system does not have finite settling time indicate that the design is
quite sensitive to parameter changes.

Figure 3 1s a root-locus plot showing effects of gain on theoretical
pole locations of a closed-loop system. Tre system is noted to be very
sensitive to gain changes around the desigred gain which places the closed-
loop poles at the origin.

Figures 4(a) and (b) are root-locus plots showing effects of altitude
on the closed-loop pole-zero locations. Ncte that a drop in altitude
changes all the aerodynamic coefficients because of the consequent change
in air density. Again it is seen that the pole locations which are at
the origin for 30,000 feet move a considersble distance (two almost
becoming unstable) for 27,000 feet.
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In summary, then, for two reasons - (a) relatively high sensitivity
to parameter changes and (b) response which is much too abrupt - the
finite settling design method does not result in a satisfactory closed-
loop performance for this particular case.

Finite settling time design, Case II, = -0.18, T = 0.25 second.-~
2

The results of the previous system studied showed that the theoretical
finite settling time design could not be simulated. Figures 3 and Y
illustrate the relatively high sensitivity of the system; however, this
is not necessarily the only reason that the similated system did not
agree with theory. Another reason might be related to the fact that
zeros of D(z) theoretically must cancel poles of G(z). Because the two
canceled poles have a relatively low damping ratio (¢t = 0.258), it is
possible that imperfect cancellation, in addition to the high sensitivity
previously noted, could be an important factor in the disagreement. The
artificial damping added in Case II increases the damping ratio of the
canceled poles to 0.707, thus making it possible to study the effect of
damping on the ability to simulate a finite settling time design.

For this example, the use of the same procedures as those of the
previous section gives the following pulse transfer functions:

1.019z°3 -10.2122 - 7.527z + 0.7295

8
(z -1)3(22 - 1.022z + 0.3494) (38)

G(z) =

K(z) = (1.019z7% -10.21272 - 7.52727 2 + 0.72952~*) (-0.2154 + 0.1528z 1)
(39)

1-k(z) = (1- z'1)2(1 +2.220z"1 4+ 1.085272 - 0.1115273) (40)
-0.2154 (1 - 0.70962" 1) (1 - 1.0222 "1 4+ 0.3494z"%)

b(z) = 1+2.2202"1+41.085z272 - 0.11152~3 (+1)

The results of the simulated response for this example are summarized
in figure 5. It can be noted from both figures 5(a) and 5(b) that the
similated system has a finite settling time, a fact which agrees with the
theory. Figure 5(a) shows this system also to be very abrupt, as would
be expected, requiring about 33 g's peak for a 10-foot step input. Fig-
ure 5(c) illustrates that the response of this system is also quite
sensitive to gain variations.

From the results of the simulated systems, Case I and Case II, it
can be concluded that if the design method being utilized requires pole-
zero cancellation one should be certain the canceled poles of G(s) are
in a well-damped region of the s plane.
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Finite settling time design, T = 1.0 cecond.~- The two cases studied
previously are unacceptable for applicatior. to an aircraft due to both
sensitivity to parameter variations and abruptness of response. One of
the questions it is necessary to answer for a sampled-data system is:

Do these two parameters vary together or can they be independently con-
trolled? It should be obvious that one way of controlling abruptness of
response is by increasing the sampling period. Thus, one can maintain

a finite settling time design and reduce tke abruptness of response, but
the important question is will the sensitivity to parameter changes also
be reduced?

An alternative procedure which could be utilized is to keep the
sampling period the same but specify, as another constraint, the time
response at sampling instants to be smooth and as slow as desired for as
many sampling instants as is necessary. If one maintains a finite
settling time design in this manner the result will be that the order of
the system is increased by one for each sampling instant specified; thus,
the digital computer will become more and more complicated. This second
method will not be illustrated here because of its additional complexity.

To determine the effect of sampling period on abruptness and
sensitivity, the two cases are designed for finite settling time period
T =1 second. For Case I, Kq = 0, the puls: transfer functions are:

G(z) = X62:82° - 110422 - 75+.92 - 72.11
(z -1)2(22 +0.870%z + 0.2662)

(k2)

K(z) = (-162.8271 - 1104272 - 754.9272 - 72.11:7%) (-0.001601 +0.001123z" 1)
(43)
1-K(z) = (1-2271+272) (1 +1.7392"1 4 0.8947272 +0.08106273)  (L4k)

-0.001601(1 - 0.7016z ") (1 + 0 .8704z"* +0.266222)
1+1.739271 + 0.89472"2 4+0.08L06z-3

D(z) = (45)

This system was simulated by the method of appendix A and typical
transient responses are summarized in figure 6. Again it may be noted
that in the simulation, finite settling time was not achieved. The
abruptness of the response has been conside:-ably reduced, that is, peak
acceleration is about 0.87 g's for a 10-foo step. Figure 6(c) shows
the response to be somewhat sensitive to ga:n changes; however, the best
indication of a sensitivity problem is the inability to simulate a theo-
retically finite settling time design. The reason for this could be the
attempt to cancel poles of G(z) which are :n relatively low damped
regions as was the case for T = 0.25 seconc.. This particular system is
too oscillatory to be useful so we shall now consider Case II where
canceled poles are more heavily damped. In this case the pulse
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transfer functions are:

-110.3z71 - 572.1272 - 200.6273 - 7.468z74

46
(1-2"1)2(1+0.1247271 + 0.0149122) (46)

G(z) =

K(z) = (-110.327% -572.1272 - 200.62~3 - 7.4682~%)(-0.003501 + 0.002378z"1)

(47)

1-K(z) = (1-2"1)%(1+1.614271+0.,4866272 +0.01780z"2) (48)
-0. - 0. ot . "1 40.01491272

D(z) = 0.003501(1 - 0.6793z71) (1 + 0.12472"1 + 0.01491z72) (49)

1+41.614%271 +0.4866272 +0.01780z 3

The results of this simulation are summarized in figure 7. Fig-
ures T(a) and (b) show that finite settling time was achieved for this
case, and illustrates again that if poles of G(z) are to be canceled
by zeros of D(z) then these poles must be heavily damped. Figure 7(a)
also illustrates, as was anticipated, that the abruptness of response
has been reduced considerably being about 1.30 g's for a 10-foot step
input. Figure 7(c) also gives conclusive evidence that the finite
settling time design is quite sensitive to gain variations even though
the abruptness of response has been reduced. Further evidence of this
sensitivity problem is illustrated in figure 8 which is a root-locus rlot
of Case II for open-loop gain variations.

The general summary of the results would tend to confirm the fact
that a finite settling time design procedure will always result in a
sensitive system and, thus, if it is to be used for any practical appli-
cations, the plant must have a transfer function free of nonlinearities
and with coefficients that are nonvariant. An intuitive reason for this
is illustrated by the root-locus plot of figure 8. We see that a finite
settling time design requires all poles of the closed-loop system, with
the exception of those being canceled, to be at the origin in the =2z
plane. It can be seen the origin is a position of extreme sensitivity
since open-loop gain changes of *5 percent cause the poles to move a
considerable distance; whereas, an additional change of 5 percent causes
only the small motion indicated in the figure. The alternative procedure
for reducing the abruptness of the response, previously mentioned, would
place an even greater number of poles at the origin. From the results
shown in figure 8, one would believe that placing more poles at the origin
would increase the sensitivity rather than decrease it.

It must be concluded from these standpoints that some of the poles
of the closed-loop system should be located in other positions than the
origin inside the unit circle of the 2z plane if we are to obtain satis-
factory performance. The next section illustrates a method for choosing
this location based on continuous-system analogy.
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Considerations Involved in Adding a Denominator to K(z)

The two previocus systems studied indicate that it would be desirable
to reduce the sensitivity to parameter variations and smooth the tran-
sient response. It is mentioned in references 2 and 3 that the addition
of a denominator (sometimes referred to as o staleness factor if the
denominator is first order) will smooth the transient response. It will
be shown here that if the denominator is properly chosen, the sensitivity
to parameter changes is reduced.

There are two possible methods for selccting a denominator. The
first is a simple trial and error process wilch can be very tedious.
The second is to base the sampled-data system response on what might be
reasonable for a continuous system of the same type. By means of the
latter method, experience gained from similar continuous system designs
can be used to select the proper location o the dominant modes in the
s plane which are known to give satisfactory performance. These modes
or location of poles can then be transferred to the =z plane and the
design carried through using the added denoninator.

Consider the continuous system shown i1 the block diagram of fig-
ure 9. The problem is tc design the networ:< D(s) so that the over-all
closed-loop response ho/hi will be satisfactory. Figure 10 shows the
pole and zero locations of G(s) for the tw> cases. It is obvious that
for Case I the complex poles of the aircraft are insufficiently damped.
For this case, D(s) must either (1) have conplex zeros to attract the
aircraft poles to a more favorable positicn or (2) cancel the poles with
zeros and place new poles in a more favorable position. The second choice
can never be used for an aircraft since (1) poles and zeros are never
known very accurately, (2) their positions shift with Mach number and
altitude, and (3) gust inputs would excite the oscillatory mode since it
is not canceled for inputs other than those from the control surface.

Figure 10(b) illustrates that the effezxt of adding an inner-loop
pitch-rate feedback (fig. 1) is to shift th: poles to a more favorable
position. It should be noted that aircraft automatic control systems
almost always utilize an inner-loop autopils>t of either the combined
normal acceleration and pitch-rate feedback type or the simple pitch-rate
feedback illustrated in this example. The addition of normal accelera-
tion as a feedback along with pitch rate allows both the natural frequency
and damping of the aircraft modes to be shifted substantially from the
basic airframe oscillatory mode.

Tt should be noted that D(s) for the continuous system (Case IT)
could be a simple lead network provided the zero, pole, and gain of the
network were chosen so that the complex polzss did not shift to an
unfavorable position for the closed-loop performance. Case II is a much
more satisfactory system for the continuous system since the network can
be simpler. It will therefore be used for the following sampled-data
system studies.
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For Case II then, what might be a reasonable selection of the domi-
nant second-order mode of the continucus system? This question cannot
be answered without specifying the task the system is required to perform.
Since this report is dealing principally with the application of sampled-
data design techniques, the only concern will be that the closed-loop
system be relatively insensitive to parameter changes. The dominant mode
of the continuous system will be the closed-loop location of the two poles
which are at s = O open loop. Figure 11 illustrates a root-locus plot
for one location of the zero and pole of a simple lead network for D(s).
Note that the zeros of G(s) are omitted since their effects on the loci
near the origin are negligible, except that the gain must be negative
for stability. It should be noted that there is not much change in the
aircraft oscillatory mode if the gain is varied from O to 17. A nominal
operating gain for the system was chosen as 17 which corresponds to the
dominant mode at wy = 0.5 radian per second and € = 0.707. From the
figure it can be seen that the resultant over-all closed-loop transfer
function can be approximated by

ho _ Ls 42
hi 4s242.828s+1

(50)

This apprcximation is Justifiled because the other three poles and two
zeros are a relatively long distance from the dominant real zero and
complex-pole locations. It will be assumed here that this transfer func-
tion, given by equation (50), satisfactorily performs the task for which
the continuous system is being designed.

The dominant mode (denominator) of the sampled-data system closed-
loop, K(z), will thus be chosen at the 2z plane location of the two
poles of the denominator of the transfer function given by equation (50).
This transforms (for T = 0.25) into

(z ~0.9126 +0.8171)(z - 0.9126 - 0.08171i) = z2-1.8252+0.8395 (51)

Figure 12 illustrates the location of poles and zeros of G(z) for Case II,

= -0.18, T = 0.25. It should be noted that the two open-loop poles at
z = 1 will move along the dotted lines as the gain is increased to arrive
at the desired location given by equation (51). It should also be noted
that D(z) can be chosen for this case in two different ways. The first
method, cancellation permitted, is to cancel the two complex poles of the
aircraft by zeros and place other poles so that, at the desired gain, they
end up at the origin. The second method, cancellation not permitted, is
to choose a single pole for D(z) and force K(z) to have at least four
poles away from the origin. This second method will actually show that
the digital-controller pulse transfer function D(z) can be simplified by
a properly chosen denominator. Both of these methods will be studied in
the following sections.

Cancellation permitted, Case II, Kq = -0.18, T = 0.25 second.- The
method by which a denominator is added to K(z) is by specifying
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[F1(z~1), meeting other constraints](Bg+B;z"%*+. . .)
K(z) = Desired denorinator (52)
and
L -x(z) [F2(z"1), meeting other constraints](ygo+7,27%+. . .)
- Z =

Desired derominator

(53)

By subtracting equation (52) from unity and equating coefficients of like
powers of 2z~ ! +to those of equation (53) the B's and y's are uniquely
determined. For this example all zeros of G(z) appear in K(z) and the
two poles at =z = 1 appear in 1-K(z)

_1.019271-10.212"2 -7.527273 + 0. 729524

= Y
6(z) (1-2"1)2(1-1.022z"1 + 0.3494z"2) (54)
K(z) = (1.019271 - 10.21272 - 7.527272 + 0.72952 %) (Bo + B2~ 1) (=5,
(1-1.8252"1+0.8395z72)
(1-2"2)2 (0 + 7,27 472272 +7,273)
1-K =
(z) (1-1.8052-170.83952-2) (56)
The solution for the 7y's and B's gives
7o = 1.000 Bo = -0.01223
7, = 0.18730 B, = 0.01133
7> = 0.07768
75 = =0.0082657
Use of equation (16) gives
- - -1 - -1 -2
D(z) = 0.01223(1 - 0.9264271)(1 -1.0222"1 +0.34942-2) (57)

1+0.1873271 4+ 0.077672™2 - 0.008266z "2

The closed-loop sampled-data system was simulated by the same method as
that of previous studies. The results of the similation are summarized
in figure 13. As can be noted in figure 13(a), a 10-foot step now calls
for a little over a 1 g maneuver. The resronse is much slower than for
that of the finite settling time design. The abruptness of the control-
surface motion at the beginning of the transient causes this peak in
normal acceleration and can be traced in part to the design method of
canceling the poles of the aircraft. Figure 13(c) illustrates that the
system response is not very sensitive to gain variationms.
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The effects of adding a similated control-surface servo of transfer
function

5 _ 1
M 1+0.02s (58)

is shown in figure 13(d) for three values of control-surface rate limit-
ing, Smax' The inclusion of a linear servo alone gave identical response
to figure 13(a) so that the large overshoots are directly traceable to
effects of control-surface limiting. It is interesting to note that the
overshoot is as high as 500 percent for Omax = 20° per second. The
unusual fact that the overshoot is higher for Opax = 20° per second than
for Omax = 10° per second is due to the time relationship between the
actual control-surface motion and the command input during the initial
part of the transient. The reason for the overshoot is traceable to the
design method of canceling poles with zeros of D(z). This might be
expected since any nonlinearities such as saturation in the control sur-
face servo velocity make cancellation impossible for a transient input.

Cancellation permitted, Case II, Kq = -0.18, T = 1.0 second.- The
application of the method previously described for this example gives

-110.3z" 1 - 572.1272 - 200.62"2 - 7.468z"*
(1-2"1)3(1 +0.12472"1 + 0.014912z"2)

a(z) = (59)

(-110.32"1 - 572.1272 - 200.62~3 - 7.46827%) (~0.0009842 + 0.0007864z"1)

K== 1 -1.320z"1+0.4966z72
(60)
(1-2"1)%(1+0.57102" 1 +0.16222"2 +0.005872z"2)
LoKlz) = 1 -1.320z"1+0.4966272 (61)
-0. 8k2(1 - 0. B 1247271 4+ 0.01491272
D(z) = 0.0009842(1 - 0.7990z~1) (1 +0.1247z~1 + 0.014912"2) 62)

1+0.5710z" 1 +0.16222™2 + 0.00587z~3

Simulation of this system by the method described in appendix A gave the
results which are summarized in figure 14. Of particular note in compar-
ing figures 13(a) and 14(a) is that increasing the sampling period does
not particularly increase the response time even though there is a con-
siderable reduction in both control-surface deflection and maximum normal
acceleration. Figure 1k(c) illustrates that the response is not particu-
larly sensitive to parameter changes. The effect of & limiting on this
system was studied; however, for a 10-foot step, the called for control-
surface motion is so small that control-surface rate 1limiting produced

no noticeable effect.
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Cancellation not permitted, Case II, Kg = -0.18, T = 0.25 second.-

As was previously mentioned the digital-cont:roller pulse transfer func-
tion D(z) can be simplified by choosing a d.fferent characteristic
equation. It may be noted in figure 12 that only a single zero and
single pole of D(z), if their location is prroperly chosen, will result
in a stable design. One of the questions, then, is how to locate the
pole and zero. Root-locus methods were tried; however, for a sampled-
data system which has as many poles and zeros as this case the root-locus
method is very tedious.

An alternative method was used as follows:

[Fa(z"1)1(Bg+Byz™ 4. . .)

K(z) = (Desired dominant mode)(l+c.z"l4coz™2+. . .) (63)
-t A

l-K(Z) _ [FZ(Z )](70"'71 + ) (614-)

" (Desired dominant mode)(L+cz" 4oz ™2+, . )

where Fi(z”') contains all the zeros of G(:) and Fo(z~') contains all
the poles of G(z). For this example, Case 1I, Kqg = -0.18, T = 0.25

(1.019z"1 -10.212'2-7.5272'34-0.72952-4)(604-Blz'l)

K = 6
(z) (1-1.825271 +0.8395272) (1 +c ;27 L+ cpz 7 2) (65)
1-2"%)%(1-1.022272 40,2494z "2 -1
L-K(z) - (1-2"4)7( i z +_? Ohz"=) (yo +712™ %) (66)
(1-1.825271+0.8395272) (1 +c1z"1+coz™2)
Solution of simultaneous equations for B's, y's, and c's gives
Bo = ~0.002763 Yo = 1.000 cy = -1.205
B, = 0.002588 7, = =0.005402 e, = 0.4018
By use of equation (16) then
-0.002763(1 - 0.9365z~1
D(z) = 763(1 - 0.9365z71) (67)

1-0.005402z"1

A root-locus plot for this design is illustrated in figure 15. It
may be noted that the closed-loop complex poles (due to the aerodynamics )
move to a somewhat more highly damped positicn in the 2z plane. Their
motion is not large, however, and it would be reasonable to assume that
the transient performance will be relatively insensitive to position
variations. This conclusion is demonstrated in the simulated responses
summarized in figure 16.
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Figure 16(d) illustrates that this design which allows no cancella-
tion is insensitive to reasonable values of control-surface limiting.
The differences in output are not even large enough to be recorded. The
only noticeable difference is in the initial control-surface motion which
is completed within one sampling instant and, for the input magnitudes
tested, created no noticeable effect on the output.

Figure 16(e) shows that effects of a change in the aerodynamics
corresponding to a change in altitudes of 10,000 and 20,000 feet are
relatively negligible. For this case the D(z) was left unchanged at
the design value of 30,000 feet altitude. This insensitivity is princi-~
pally due to the relatively "low-gain" system. Had a more rapid response
been required the same conclusions might not have been reached.

It is of interest to compare the transient responses of the sampled-
data system derived by this design procedure with those of the continuous
system which was designed to obtain desired dominant mode characteristics.
The root-locus plot of the continuous system used for comparison is shown
in figure 11. Figures 17(a) and (b) show the very close comparison of the
transient responses of the two systems. It should be noted that the start
of the sampled-data system response was shifted so that the two start at
the same point since a delay of 0 to 0.25 second (dependent on the time
of the application of the step) can be experienced by the sampled system.

CONCLUDING REMARKS

It has been demonstrated that the finite settling time design of a
sampled-data system does not produce desirable characteristics when the
method is applied to the design of an altitude autopilot. Two undesirable
features are the very abrupt response and the extreme sensitivity to
parameter changes which are unsatisfactory for aircraft and many other
automatic control systems. Increasing the sampling period generally
reduces the abruptness of response; however, it does not appear to elimi-
nate the sensitivity problem. The sampling period may also be dictated
by other considerations, so that it might not be a variable.

It has been demonstrated that basing the sampled-data system dominant
mode on a ceontinuous system design results in a much more practical system
with respect to the two previous considerations. It has also been shown
that cancellation of aircraft poles by their inverse in the stabilizing
digital network is undesirable. This, of course, is not surprising since
the same conclusion is true in continuous systems.

The most satisfactory design method tested was one in which no
cancellation was allowed and the resulting system has the simplest digital
control function possible.
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In general, the use of the Z transform for sampled-data system
design appears to be almost as easy to handle as the Laplace transform
for continuous system design. One drawback which has been noticed is
that root-locus methods are not easily applicable, principally because
the 7 transform of the open-loop system has almost the same number of
zeros as poles. Since stability requires poles to be confined to the
unit circle, a knowledge of the asymptotic behavior for a large =z does
not help. In addition a solution for saddle points in the 2z plane is
almost impossible. This means that one must use the tedious method of
trying points to see if they are on the loci without knowing the approxi-
mate loci. The other drawback is that for tke high order system of this
example the sampling period should be chosen initially rather than carried
through as an arbitrary constant to be determined in the final design.
This is simply because of the complexity of the resultant equations which
occur if it is arbitrary. Since there does rot appear to be a clear cut
means of selecting the sampling period, then one would, in general, have
to duplicate several designs at different periods in order to arrive at
the most suitable one for the particular application.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 14, 1959

~ -
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APPENDIX A
SIMULATION OF THE SAMPLED-DATA SYSTEM

A sampled-data system can be simulated on a conventional analog
computer. The only additional device required is a sample~hold circuit.
There are many ways of constructing this type device utilizing relays or
various electronic circuits. The circuitry used for this study is briefl;
described in appendix B and is an all electronic device.

Given a sample-hold circuit, how is D(z) simulated? The method
used is described in reference 6; however, the technique is simple and
will be described here. The following equations can be developed from
figure 18

_ A(z)B(z)
Z[(l-—e'ST)/s]

D(z) = A(z)B(z) (A1)

ZL(1 - e™5T)/s] i 1
1+z{l@-eT)/sla(s)} 1+ (1-z71)zla(s)/s]

Alz) = (A2)

from equation (A2)

SIS, I

3() - 725 r(e) [s(F ) - - hgBE ]

from equation (A4)

Z[P(ss)] Bz (45)

T -z

A given D(z) is to be simulated by the circuit of figure 18, The prob-
lem is then to split D(z) into A(z) and B(z) so that Q(s) and P(s)
can be determined from equations (3) and (5), respectively.

(1 'alz-l)(l'-azz"g)(. c )
(1L -byz71)(1-boz"2)(. . .)] (A6)

D(z) = K{
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Now the following conditions insure that Q{s) and P(s) will be physically
realizable stable networks:

(1) All unstable poles of D(z) shall de contained in A(z).
(2) Unstable zeros of D(z) shall be contained in B(z).
(3) All gain, K, shall be contained in B(z).

(4) Stable poles and zeros shall be distributed between A(z)
and B(z) to allow {[l/A(z)] -l}[l/(l -z-1)] and B(z)/(1-2z-1)
to be expanded in partial fractions of type B/(l-—az'l).

Reference 6 gives a number of examples and 3:xplains in detail how all
physically realizable D(z)'s may be constricted from R-C networks.
Since the desire here is to simulate, one miy allow complex poles. Con-
ditions 1, 2, and 4 assure Q(s) and P(s) will be stable networks. These
conditions certainly do not appear to be ne:cessary for simulation pur-
poses, a fact which essentially means that all of D(z) except the gain,
K, can be assigned to A(z). In figure 18, this can be seen to be a
desirable way of handling the simulation siace only one sample-hcld
circuit is required. For the example, Case I, Ky = 0, T = 0.25

(1 -0.71462=2)(1 - 1.3562z"1 +0.7182z272)
b(z) = -0.1579 [ 1T+2.2152- T+ 1.2[62°2 - 0.12112°3 (A7)
B(z) = -0.1579 = Gain >f D(z) (A8)
_(1-0.7146271)(1-1.356271+0.71822"%)
A(z) = 1+2.2152"1+1.276z"2 - 0.1211z"3 (49)
Z[Q(s)]_[ 1 _lJ 1 4.285z7% - 0.411127% + 0.394127>
s | [A(z) (L-2z"%) (1-z"1)(1-0.71+62"1)(1 -1.356z"* +0.71.82272)
(A10)
This expression is expanded in partial fraction expansion
Q(s)| [/4.26  30.83  _ 10.40z +0.8049
Z[ s :l“z z-1 z-0.7186  22-1.356z +0.7182 (A1)

The terms are individually converted to the s plane and recombined to
give

~ 8.655s2 + 84.38s +392.0
" (s +1.345)(s2+1.32ks +7.065)

Q(s) (A12)
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It should be noted that Q(s) has a lower order numerator than denomina-
tor. This is absolutely essential because of the circuit used and is a
consequence of imposing condition 3.

A block diagram of the system to be simulated is shown in figure 19.
Figure 20 shows the corresponding analog-computer diagram used for
simulating the system.
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APPENDIX B

AN ELECTRONIC SAMFLE-HOLD (IRCUIT

As was previously mentioned, there are a number of methods of
constructing a sample-hold circuit. The circuitry utilized for this
example is all electronic and for some applications may offer advantages
over circuitry utilizing relays.

Figure 21 is a block diagram of the circuit used. The diode bridge
acts as a gate circuit connecting the output of amplifier 1 to the input
of integrator 2. When a positive pulse is applied to A and a negative
pulse to B, the diode bridge connects the output of amplifier 1 to the
input of integrator 2. When zero signal is applied to A and B the input
to integrator 2 is open; thus, the diode bridge acts as a sampler of
amplifier 1. The function of integrator 2 is to hold the ocutput between
the sampling instants. Integrator 2 acts as an open-loop integrator dur-
ing the time in which the pulse is off and, as a consequence, its output
(other than for drift) stays at the value it vas at the previous sampling
instant. If an initial step of E; 1is assumed the circuit can be seen
to work in the following manner. Initially anplifier 1 builds up to the
step value; as soon as the pulse arrives at A and B, the integrator
output starts to change value. If the time constant of amplifier 1, 2,

3 combination is about 1/5 of the sampling time, then the output Eg
will be equal to +E{ at the end of the sample time. Then Eg 1is held
at Eji by the integrator condenser. Drifts :are corrected each sampling
instant. For this problem it was desired tha: the sample time should not
be longer than 1 percent of the sample period, T, and that the problem
be run on a real time basis on the analog comjiuter. This means that for
a 4 cps sampling frequency the sample time = ;/100 X 0.25 second = 2.5
milliseconds and the time constant of amplificr 1, 2, 3 combination
should be approximately 0.5 millisecond.

As can be seen from the above number, re _atively fast amplifiers
must be available for use in this sample-hold circuit. This is one
difficulty which would probably, in general, imake this circuit difficult
to fabricate from conventional analog compute - amplifiers. For use in
this problem specially designed high-performaice chopper-stabilized
amplifiers were available. No particular pro>lems were noticed in the
use of this circuit other than the need for a1 occasional adjustment to
compensate for drift in the integrator.
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